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Abstract
In the last decades, technological progress in computing capacity, data acquisition and its storage has enabled new possibilities to analyze big data using
machine learning, which is incomprehensible for manual analysis. Therefore, big data analysis and machine learning are well suited in the realms of drug
development, to analyze the complexity of cellular processes. The objective of the present study is to develop and train an artificial neural network (NN) based
on contractility parameters that differentiates compounds according to their influence on cellular pathways in human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs).
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Conclusion
On average our developed NN was able to correctly classify >90% of the corresponding target pathways using 65% of the development data for training. The
remaining cross-validation (15%) and test (20%) sets ensured the functionality of the algorithm with predictive powers of 91% and 87%, respectively. In
summary, the NN has shown to be a reliable analysis tool for in vitro drug screening and cardiotoxicity assays using beat shape data of hiPSC-CMs obtained
with the FLEXcyte technology, and thus offers insight into the effects of compounds on the target signaling pathways. Further experiments are planned with
compounds not part of the development set to show the predicting power of this NN.
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Data Acquisition
The FLEXcyte technology enables high
resolution contractility measurement of
hiPSC-derived cardiomyocytes cultured on
hyper-elastic silicone membranes, mimicking
the physiological mechanics of cardiac tissue
[1, 2]. Analysis of the biohybrid’s deflection
provides the following features:

Neural Network Design (Hyperparameters)
NNs consist of several application-dependent
hyperparameters, e.g. hidden layer architecture (HLA),
activation functions of neurons, learning rate (LR), and
regularization. The aim is to optimize the weights of
each neuron in the NN for a specific task. An analogy
for this would be like skiing through the mountains
(residual) in one-dimensional space (single weight)
trying to reach the lowest valley.

Optimization of Hyperparameters Results
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During training, dropout regu-
larization prevents the NN from
overfitting via random deacti-
vation of neurons with a
defined dropout rate (DR) [4].

The LR plays a critical
role in reaching the
optimal weights [3].

Performance Evaluation of the NN
Metrics for Evaluation are based on the 
measures TP, FP, FN, and TN [8].
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• Precision =
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• Recall =
σ 𝑇𝑃
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FLEXcyte data of 138 Cardiomyocyte sample responses to 5 drugs 

65 % 
Training data

15%
Cross Validation data

20%
Testing data

Random categorizing of data into Training, 
Validation and Test sets (well representing all 5 

different drug samples in 3 sets)

Optimizing the NN, with training set

Evaluation of Model
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Repeated for different combination of NN Architecture, LR and DR
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Basic structure of NN

Data for NN with 5 TKIs and their effect on 11 SPs

Optimization starts with random initial weights 
[5] at each neuron to calculate the overall

Optimization of hyperparameters was
performed in 2 consecutive steps:
1) Optimization of HLA
2) Optimization of LR and DR

using HLA from step 1
The best performance was achieved
with the following hyperparameters:
• HLA with 2 hidden layers with

99 ReLU-activated neurons each
• LR of 0.025
• DR of 0.2

The best performance was achieved
in run 72 of the 100-times repeated
random sub-sampling validation.

K-times repeated random 
sub-sampling validation [8]

Results of best model on development sets

Results of best model on compound sets

Average results of 100-times random
sub-sampling validation
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These features are
used by a NN to
classify 5 tyrosine kinases inhibitors (TKIs)
into 11 signaling pathways (SPs) that are
influenced by their effects.

1. Contraction amplitude
2. Beating rate
3. Upstroke duration
4. Downstroke duration
5. Upstroke velocity
6. Downstroke velocity
7. Upstroke integral
8. Downstroke integral
9. Day of measurement

Example of residual in 1D space

Step of Skier 
ෝ=

Learning Rate

Random initialized weight

Optimum

residual (Feedforward [3]).
These random weights are
optimized to attain the
minimum residual (Back-
propagation [3]). Adam
algorithm [6] is employed in
our case to optimize the
weights. These new weights
are then used for the next
Feedforward step. This
process is repeated until the stopping
condition is met, e.g. the improvement of the
residual drops below a certain tolerance level
[7]. Afterwards the NN can be evaluated.
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Dev Set Train Set CV Set Test Set
Accuracy 0,93 0,96 0,91 0,87
Exact match ratio 0,77 0,83 0,72 0,63


