

In Vitro Systems for the Assessment of Chronic Cardiotoxic Effects: News from the HESI Stem Cell Working Group

¹ innoVitro GmbH, Artilleriestraße 2, 52428 Jülich, Germany | ² Nanion Technologies GmbH, Ganghoferstraße 70a, 80339 München, Germany | ³ Fujifilm Cellular Dynamics International, 525 Science Drive, Madison 53711, Wisconsin, USA

Abstract

Since long-term exposure of cancer-related therapeutics have been linked to alterations of cardiotoxicity. The objective of the study was to optimize non-clinical safety assessment strategies of chronic cardiotoxicity by testing prolonged exposure of reference compounds on cell-based assay systems using human induced pluripotent stem cell-derived cardiotoxic potential and diverse mechanisms of action (MoAs) on contractile and electrophysiological properties of hiPSC-CMs over a period of up to 120 hours. This excerpt of the HESI Stem Cell Working Group study underlines the potential of *in vitro* systems to address contractile function of hiPSC-CMs for chronic safety pharmacological studies of compounds with diverse MoAs.

Study Outline

contraction force as well as electrophysiological and structural disturbance.

as well as biochemical assays.

Target Toxicity	Compound	Conc. Range	Parameter		
Energetics/ Mitochondrial Toxicity	Doxorubcin	0.1 - 3 µM	Electrophys		
	Erlotinib	0.3 - 10 µM			
	Sunitib	0.01 - 1 µM	Mechanobi		
Electrophysiological Disturbance	Pentamidine	0.1 - 3 µM			
	Arsenic Trioxide	0.1 - 3 µM	Optical Met		
Contractility	BMS-986094	0.1 - 3 µM			
	Milrinone	0.1 - 10 µM	Biochemica		
	Nioltinib	0.1 - 10 µM			
Structural/myofilament Disturbance	Endothelin-1	0.3 - 100 nM	↑ Table 2: Me		
	Vinblastine	1 - 300 nM	effects		
	Vincristine	1 - 300 nM	← Table 1: Car target toxicity		
	Vinorelbine	0.1 - 3 µM			
	green: presented in this poster				

Technology

effects as demonstrated in the CiPA study (Blinova et al., 2017).

al., 2016 and 2020)

• Blinova, K., Stohlman, J., Vicente, J., Chan, D., Johannesen, L., Hortigon-Vinagre, M. P., Zamora, V., Smith, G., Crumb, W. J., Pang, L., Lyn-Cook, B., Ross, J., Brock, M., Chvatal, S., Millard, D., Galeotti, L., Stockbridge, N., & Strauss, D. G. (2017). Comprehensive Translational Assessment of Human-Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias. Toxicological sciences : an officia journal of the Society of Toxicology, 155(1), 234–247.

M. Gossmann¹, U. Thomas², E. Dragicevic², R. Vaidyanathan³, B. Lickiss¹, O. Filali³, S. Stölzle-Feix², P. Linder¹

• Goßmann, M., Frotscher, R., Linder, P., Neumann, S., Bayer, R., Epple, M., Staat, M., Artmann, G. M. (2016). Mechano-Pharmacology, 38(3), 1182–1198. • Goßmann, M., Linder, P., Thomas, U., Juhasz, K., Lemme, M., George, M., Fertig, N., Dragicevic, E., & Stoelzle-Feix, S. (2020). Integration of mechanical conditioning into a high throughput contractility assay for cardiac safety assessment. Journal of pharmacological and toxicological methods, 105, 106892.

nan]i[on FUJIFILM

et Toxicity	Compound	C1	C2	C3	C4
getics/ chondrial Toxicity	Doxorubcin	0,75	0,45	0,40	0,36
	Erlotinib	0,95	0,99	1,03	1,00
	Sunitib	0,94	1,10	1,23	1,33
s Disturbance	Pentamidine	0,94	0,94	0,81	0,62
ractility	BMS-986094	0,93	0,78	0,83	0,77
	Nioltinib	0,96	1,09	1,14	1,00
tural/myofilament Irbance	Endothelin-1	0,82	0,83	0,86	0,87
	Vincristine	0,90	0,57	0,43	0,46

Table 3: Effect of the tool compounds on the base impedance as a measure of
 monolayer integrity

• **Doxorubicin** had a strong toxic effect, measured both in contraction

• Erlotinib had only mild effects on the contractility of hiPSC-CMs

• Sunitinib had a strong effect on the chronotropy (beat rate, beat duration) and inotropy (amplitude). The monolayer integrity was

• Pentamidine had a strong effect on the contraction force and on

• BMS-986094 had a major impact on all contractile parameters and

• Nilotinib had a strong effect on the contractile parameters, while the monolayer integrity remained unchanged.

• Endothelin-1 had a positive effect on the contraction force (amplitude), but little or no effect on the monolayer integrity.

• **Vincristine** had a strong effect on both the contractile parameters

